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SILICON CARBIDE AND OTHER FILMS AND
METHOD OF DEPOSITION

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

A part of this invention was made with government support
under Contracts No. NCA3-201 awarded by NASA and
DABT 63-1-0010 awarded by DARPA. The government has
certain rights in this invention.

BACKGROUND

The present invention relates to silicon carbide and other
films, and, more particularly, to controlled deposition of these
films on a substrate.

Semiconductor, micro- and nanoelectromechanical sys-
tems (MEMS/NEMS) apply integrated circuit fabrication
technology to fabricate optical, mechanical, electrochemical,
and biosensor devices. One of the important steps in creating
MEMS and NEMS devices is the deposition of thin films of
material onto substrates. Once the films are deposited, various
etching techniques may be employed to shape the deposited
film.

In typical MEMS/NEMS devices, silicon is a primary
material. Silicon carbide is a material that has very good
physical and chemical characteristics, and is noted for these
properties at temperatures above about 300° C. Silicon car-
bide is an advantageous material for use in films for MEMS
and NEMS, particularly because of its exceptional electrical,
mechanical, and chemical properties compared to silicon in
normal and harsh operating environments.

One of the barriers limiting development of silicon carbide
in MEMS production has been the inability to deposit uni-
form films of silicon carbide on large area substrates having
properties that are advantageous to and required for MEMS
and NEMS. Deposition of silicon carbide is conventionally
subject to variations in residual stress, residual stress gradi-
ent, and electrical resistivity. These properties are important
to the proper operation of MEMS and NEMS devices.

With silicon, residual stress, residual stress gradient and
electrical resistivity can be controlled after the film is depos-
itedby annealing the film at elevated temperatures. Annealing
in silicon induces crystallographic changes that result in the
modification of these properties. With single crystalline and
polycrystalline silicon carbide, such an approach is not fea-
sible because silicon carbide is chemically and crystallo-
graphically stable at conventional annealing temperatures.
For silicon carbide films deposited on silicon substrates,
annealing is completely ineffective because the non-silicon
carbide substrate limits the annealing temperatures to tem-
peratures too low for effective annealing. The present inven-
tion bypasses the need for annealing altogether by imple-
menting control of the residual stress, residual stress gradient,
and electrical resistivity in the silicon carbide films during the
film formation (deposition) process.

SUMMARY OF THE INVENTION

The present invention provides methods of depositing
films on a substrate that enables control of the residual stress,

2
residual stress gradient, and electrical resistivity of the depos-
ited film. The invention includes films of various composi-
tions, such as ceramic films with the ceramic compound
having a metallic and non-metallic component. Preferably,

5 the film is a silicon carbide film. The silicon carbide film is
depositedby chemical vapor deposition onto a substrate, such
as a silicon substrate, by placing the substrate in a reaction
chamber and evacuating the chamber to a pressure below
about 10 mtorr. The temperature of the chamber is maintained

l0 at about 900° C. A carbon precursor, such as acetylene (5% in
hydrogen) is supplied to the chamber at a flow rate of about
180 standard cubic centimeters per minute (sccm). A silicon
precursor, such as dichlorosilane (DCS), is supplied to the

15 chamber at a flow rate of about 54 sccm. As the precursors are
supplied, the pressure of the reaction chamber increases and
may be maintained at a fixed pressure.

Under these conditions, tensile films with appreciable
stress gradients are deposited at pressures less than 2.65 torr

20 and compressive films with appreciable stress gradients are
deposited at pressures greater than 2.65 torr. At 2.65 torr, the
film has a very low residual tensile stress (<20 MPa), a neg-
ligible stress gradient, and a resistivity that is less than 10
Q-cm without intentional doping. So control of the pressure

25 with other parameters fixed resulted in control of the residual
tensile stress, stress gradient, and electrical resistivity.

In another embodiment, the chamber is maintained at a
pressure of about 2.0 torr. A carbon precursor, such as acety-
lene (5% in hydrogen), is supplied to the chamber at a flow

30 rate of about 180 standard cubic centimeters per minute
(sccm). A silicon precursor, such as DCS, is supplied to the
chamber at a flow rates between 18 and 72 sccm. Under these
conditions, tensile films with appreciable stress gradients are
deposited at DCS flow rates below 35 sccm and compressive

35 films with appreciable stress gradients are deposited at DCS
flow rates above 35 sccm. At a DCS flow rate of 35 sccm, the
film has a very low residual tensile stress (<20 MPa), a neg-
ligible stress gradient and a resistivity that is less than 10
Q-cm without intentional doping. So control of the flow rate

40 of the metal element precursor, in this case the silicon pre-
cursor DCS, with other parameters fixed resulted in control of
the residual tensile stress, stress gradient, and electrical resis-
tivity.

The present invention also relates to substrates having a
45 silicon carbide film deposited thereon in which the residual

stress is 0±100 MPa and the achieved electrical resistivity is
less than about 10 Q-cm, and to semiconductor, MEMS, and
NEMS devices having such substrates.

50	 DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view of an apparatus used in the
present invention;

FIG. 2 is a schematic view of another embodiment of an
55 apparatus used in the present invention;

FIG. 3 is a graph of residual stress versus pressure for one
embodiment of the present invention;

FIG. 4(a) is a SEM micrograph of a silicon carbide canti-
lever from a film made in accordance with one embodiment of

60 the present invention;
FIG. 4(b) is another SEM micrograph of a silicon carbide

cantilever from a film made in accordance with one embodi-
ment of the present invention;

FIG. 5 is a graph of electrical resistivity versus deposition
65 pressure for one embodiment of the present invention;

FIG. 6 is a graph of residual stress versus dischlorosilane
flow rate for one embodiment of the present invention;



US RE42,887 E
3
	

4
	FIG. 7 is a SEM micrograph of a silicon carbide cantilever 	 ordinary skill in art may determine the appropriate pressure

	

from a film made in accordance with one embodiment of the 	 and silicon precursor flow rate to achieve minimum residual
present invention; and
	 stress, residual stress gradient, and electrical resistivity with-

	

FIG. 8 is a graph of electrical resistivity versus dischlorosi-

	

	 out undue experimentation, and use of alternate silicon and
lane flow rate for one embodiment of the present invention. 5 carbon precursors does not depart from the spirit and scope of

the invention.
DETAILED DESCRIPTION

	
Examples of possible alternate silicon precursors include

silane, trichlorosilane, and tetrachlorosilane, among others.

	

The present invention relates to the deposition of film, 	 Possible alternate carbon precursors include carbon-contain-
preferably a silicon carbide (SiC) film, onto a substrate with io ing gases, methane, propane, ethylene, xylene, butane, car-

	

control of various properties, such as residual stress, residual
	

bon tetrabromide, and other hydrocarbons.

	

stress gradient, and electrical resistivity. The invention will be
	

Possible alternate silicon and/or carbon precursors may

	

described as it relates to deposition of SiC onto a silicon
	

include single-source precursors for both silicon and carbon.

	

substrate, particularly for use with MEMS and NEMS
	

Examples ofpossible single-source precursors forboth silane
devices. The invention, however, is only exemplified by such 15 and carbon include halosilane, trimethylsilane, tetramethyl-

	

description and is limited only by the claims included herein. 	 silane, dimethyldimethoxysilane, tetramethylcyclotetrasi-

	

Silicon carbide film, particularly polycrystalline SiC film,	 loxane, bis-trimethylsilylmethane, methyltrichlorosilane,

	

is desirable for use in MEMS and NEMS devices, as 	 tetraethylsilane, silacyclobutane, disilabutane, and any other

	

described above. Control of key properties, such as residual
	

material suitable foruse as a single source precursor, as can be
tensile stress, residual tensile stress gradient, and electrical 20 determined by one of ordinary skill in the art.

	

resistivity, provides SiC films that may be effectively used in
	

If a single-source precursor is used, then either a separate

	

MEMS and NEMS devices. Silicon carbide films having low 	 carbon precursor or silicon precursor may be provided to the

	

residual stress, less than about 100 MPa, and preferably less	 chamber in order to correctly control the ratio of carbon to

	

than about 50 MPa, are highly desirable for MEMS and
	

silicon in the reactor. In this, event, the flow rate of the single
NEMS applications. Conventional deposition techniques 25 source of the silicon or the single source of the carbon may be

	

have heretofore been unable to achieve such low stress values	 varied to achieve the proper ratio of carbon gas to silicon gas
in polycrystalline silicon carbide films. 	 within the chamber so that the appropriate reaction occurs at

	

In these and other applications, control of stress properties, 	 the appropriate rate to deposit the silicon carbide film with the

	

such as residual stress and residual stress gradient, and elec- 	 properties described above.

	

trical resistivity properties also may be desired to achieve 	 so	 Other silicon-based films, such as silicon nitride (Si3N4),
other preselected values that may not be low stress values. 	 silicon dioxide (S'0 2), silicon oxynitride (SiON,) and sili-

	

These films are particularly suitable for use in devices	 con carbon nitride (SiCNy) may also be deposited with the

	

operating in harsh environments because of the outstanding	 method of the present invention using the appropriate precur-

	

mechanical, electrical, and chemical properties of SiC. 	 sors. In the case of silicon nitride, appropriate precursors may
Examples of such applications include pressure sensors for 35 include silane (SiH4) or DCS for a silicon precursor, and

	

internal combustion and jet engines, wind tunnel sensors and
	

ammonia (NH,) for a nitrogen precursor. The silicon precur-

	

instrumentation, and instrumentation and control systems of
	

sor flow rate or the deposition pressure may be varied to

	

nuclear power systems. In addition, silicon carbide can be	 achieve a deposited film having the properties described

	

used in device structures commonly made from silicon, such
	

above. The optimal range of deposition pressure and silicon
as acceleration sensors, biomedical sensors and actuators and 40 precursor flow rate may be determined without undue experi-

	

other applications not typically characterized by harsh envi-	 mentation in accordance with this invention.

	

ronments. Silicon carbide can be used as an alternative mate- 	 Other ceramic films based on a non-silicon ceramic may

	

rial to silicon, capitalizing on the superior mechanical and
	

also be deposited with the method of the present invention to

	

chemical properties, as well as comparable electrical proper- 	 achieve the properties described above. Use of the term
ties between SiC and silicon. 	 45 "ceramic" herein is defined as inorganic, nonmetallic mate-

	

Applicants have successfully produced thin polycrystal- 	 rials, typically crystalline in nature (but could be amorphous),

	

line SiC films with controlled properties on silicon and silicon	 and generally are compounds formed between metallic and

	

dioxide substrates in which the residual tensile stress is at or 	 nonmetallic elements, such as aluminum and oxygen (alu-

	

near zero, the electrical resistivity is very low, and the residual
	

mina Al2O3), calcium and oxygen (calcia CaO), silicon
tensile stress gradient is near zero. These films were produced 5o and oxygen (silica S'02), and other analogous oxides,

	

by a low pressure chemical vapor deposition process, using 	 nitrides, borides, sulfides, and carbides. The flow rate of the

	

dicholorosilane (SiH 2C12) as the precursor for silicon (Si) and
	

nonmetallic precursor is held fixed and the deposition pres-

	

a mixture of 5% acetylene (C2H2) in hydrogen (H2) as the	 sure or the flow rate of the metallic precursor would be varied

	

precursor for carbon. Applicants have determined that control
	

to achieve the properties described above. The optimal range
of the silicon precursor flow rate and/or the pressure at which 55 of deposition pressure and metallic precursor flow rate may

	

the deposition occurs allows for production of SiC film hav- 	 be determined without undue experimentation using the pro-

	

ing the properties described above. Successful production of
	

cedures provided herein.

	

cantilevers, bridges, membranes, and lateral resonant struc- 	 Other compound semiconducting films based on materials

	

tures has been completed, demonstrating the viability of the 	 other than silicon may also be deposited with the method of
material fabricated in accordance with the present invention 60 the present invention to achieve the properties described
in micromachining applications.	 above. These materials include, but are not limited to, GaN,

	

It is believed that control of the flow rate of silicon precur- 	 GaAs, InP, and other analogous semiconductor materials

	

sor and/or the deposition pressure of the reaction chamber
	

deposited by chemical vapor deposition.

	

while other parameters are fixed will enable control of the
	

The examples described herein use silicon as the substrate
residual stress, the residual stress gradient, and the electrical 65 material. The method described herein is not limited to use of

	

resistivity of silicon carbide film deposited by vapor deposi- 	 silicon and silicon derivative substrates, such as silicon car-

	

tion for any silicon precursor and carbon precursor. One of
	

bide and silicon dioxide, but rather can be applied to the
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deposition on any substrate material where the resultant film
is subjected to a residual stress.

TEST PROCEDURE

FIGS.1 and 2 illustrate the apparatuses used to conduct the
following procedures. Prior to loading silicon substrate,
wafers, of chips into a reaction chamber 10, 110 of a low
pressure vapor deposition apparatus 12, 112, the wafers 14,
114 were cleaned using a standard RCA cleaning procedure. 10

Silicon wafers 14, 114 of 100 mm diameter were placed into
a conventional hot-wall horizontal cylindrical quartz furnace
16,116. The reaction or deposition chamber 10,110 was 2007
mm in length and 225 mm in diameter. The wafers were held
in a SiC boat 18,118 that rested on a paddle 20, 120 attached 15

to a moveable front flange 22,122 and placed near the center
of the reaction chamber 10, 110.

In the configuration illustrated in FIG. 1, two small injec-
tion tubes 24, one for the dicholorosilane and one for the
acetylene, were used to introduce these precursor gases into 20

the chamber 10 directly underneath the boat 18. To accom-
modate these injection tubes 24, the furnace tube was of
conventional design, consisting of a long, quartz cylinder 17
that was capped on each end with metal flanges 22, 26. The
injection tubes 24 were attached to small ports on each of 25

these flanges 22, 26. The front flange 22 consisted of a large
circular plate that served as the chamber door. This door was
attached to a cantilever assembly for automatic loading and
unloading. The paddle 20 holding the SiC 18 boat was
attached only to the inside surface of the front flange door 30

assembly 22. The rear flange 26 was not movable and was
equipped with an outlet port that was attached to the vacuum
system 28. Precursor gases were simultaneously introduced
via the gas injection tubes 24 through gas inlets 25 and ports
in both the front flange 22 and the rear flange 26.	 35

In a second configuration illustrated in FIG. 2, the injector
tubes 24 were omitted. In this configuration, the furnace tube
consisted of a long quartz cylinder 117 that was circular in
cross section at the front end 130 and conical in shape at the
rear 132. The front flange assembly 122 was as described 40

above and was affixed to the front end 130 of the cylinder. The
rear 132 of the cylinder needed no flange, but instead con-
tained a quartz nipple 134 that attached directly to the vacuum
system 128. Gases were introduced into the chamber through
gas inlets 125 and ports in the front flange 122. No tooling was 45

included to inject the gases directly beneath the wafer boat
118.

The vacuum system 28,128 consisted of a roots blower and
mechanical pump combination (not shown) that can reach a
base pressure of less than 1 mtorr in a fully loaded system, 50

regardless of configuration. Pressure was controlled through
pressure control system 36,136. Abutterfly valve 37,137 was
provided to assist with the pressure control. The gas flow rates
and pressure control systems 36, 136 were controlled by a
conventional furnace control computer system (not shown). 55

The temperature in the reaction chamber 10, 110 was con-
trolled via resistive heating coils 38, 138.

Each load consisted of 25 Si wafers evenly distributed in a
single, 50-slot SiC boat. The first and last five wafers were
designated as baffling wafers to stabilize gas flow. Wafers in 60

slots 6, 10, 13, 16, and 20 from the loading end were desig-
nated for study.

EXAMPLE 1
65

FIG. 1 illustrates the low pressure chemical vapor deposi-
tion apparatus 12 used for these tests. Depositions were per-

6
formed for two hours at pressure settings from about 0.42 torr
to about 5 torr. In several cases, longer times were used to
deposit thicker films. The flow rates of DCS and acetylene
(5% in hydrogen) were held constant at about 54 standard
cubic centimeters per minute (sccm) and 180 sccm, respec-
tively. The temperature was held fixed at about 900° C. The
furnace was configured with injector tubes to introduce the
acetylene and DCS gases into the reaction chamber.

Following each deposition, the thickness of the films was
measured optically using a Nanospec 4000 AFT spectropho-
tometer. The film residual stresses were determined by mea-
suring the curvature of the silicon wafers before and after film
deposition, using a laser-based curvature measuring system
(Frontier Semiconductor measurement, FSM 120). Silicon
carbide films were deposited on both sides of the wafer, and
reactive etching in a CHF3/02 mixture was used to remove the
film deposited on the backside of the wafers.

FIG. 3 illustrates the relationship between the deposition
pressure and the residual tensile stress of the SiC at 900° C.
resulting from this series of tests. The residual stress changed
roughly from about 700 MPa (tensile) at 456 mtorr to about
—100 MPa (compressive) at 5 torr, with films deposited at
about 2.65 torr having near zero residual stress. Films depos-
ited at pressures from about 2.5 torr to about 5 torr had stress
values between about 100 MPa and —100 MPa. The value of
stress varied little from wafer to wafer in the same run, as
indicated by FIG. 3.

Single layer cantilever beams were fabricated from about
500 mu-thick polycrystalline SiC films made in accordance
withthis example to characterize the stress gradient at various
deposition pressures. The stress gradient is the change in the
magnitude of residual stress as a function of film thickness.
Stress gradients can cause cantilever beams to bend, whereas
beams made from films with little or no stress gradient remain
flat. For MEMS and NEMS devices, a stress gradient near
zero is desirable when the planarity of device structures is
required. A residual stress gradient in the structural layers of
MEMS/NEMS devices is desirable in applications where
curved or strained structures are needed. In such structures,
precise control of residual stress gradient is required. Control
of stress gradients requires precision control of residual
stresses.

FIG. 4(a) illustrates a cantilever beam 210 made in accor-
dance with the present invention at about 2.65 torr. The beam
210 is generally flat and exhibits little, if any, bending. FIG.
4(b) illustrates a stressed cantilever beam 212 made in accor-
dance with the present invention at about 3.75 torr. This beam
212 bends slightly upward.

FIG. 5 illustrates the electrical resistivity of films made in
accordance with the present invention at various deposition
pressures. These data indicate a relationship between depo-
sition pressure and electrical resistivity. The minimum elec-
trical resistivity occurs near the deposition pressure at which
the residual stress and the residual stress gradient are nearly
zero, namely, about 2.65 torr. Electrical resistivity is less than
10 Q-cm at deposition pressures from slightly greater than
about 2.0 torr to about 4.5 torr. While these values may seem
high relative to other semiconductors (including SiQ, these
measurements were made from polycrystalline films that
were not doped either before or after deposition. It is common
practice to use doping procedures to reduce the electrical
resistivity of semiconducting materials, especially SiC.
These findings strongly suggest that doping during the depo-
sition process will be most effective using conditions that
favor low stress and low stress gradients.

EXAMPLE 2

The same procedure described above was used, except that
the low pressure chemical vapor deposition apparatus 112
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illustrated in FIG. 2 was used (no injectors, single front
flange). For this series of tests, the deposition pressure was
maintained essentially constant at about 2.0 torr, and the flow
rate of the silicon precursor, in this case DCS, was varied
between about 18 sccm and about 54 sccm. The flow rate of 5

acetylene (5% in hydrogen) was fixed at about 180 sccm, and
the temperature of the reaction chamber was maintained at
about 900° C.

As above, the films were characterized for residual stress,
residual stress gradient, and electrical resistivity. FIG. 6 illus- io
trates the measured residual stress versus the flow rate of the
DCS. The observed residual stress decreased as a function of
DCS flow rate until a flow rate of 36 sccm. The residual stress
was substantially the same at a flow rate of 54 sccm as it was
at a flow rate of 36 sccm. The residual stress as a function of 15

flow rate, as illustrated in FIG. 6, appears to be similar to the
residual stress as a function of deposition pressure, as illus-
trated in FIG. 3.

FIG. 7 is a SEM micrograph of a micromachined second
cantilever beam 214 made in accordance with this example of 20

the present invention at a dicholorosilane flow rate of about 35
sccm. As seen from FIG. 6, a dicholorosilane flow rate of
about 35 sccm corresponds to residual stress of less than 50
MPa. Films with low residual stress values, suchas the second
cantileverbeam 214 in FIG. 7, exhibit very low residual stress 25

gradient. The second cantilever beam 214 illustrated in FIG.
7 exhibits substantially no bending.

FIG. 8 is a graph of electrical resistivity versus DCS flow
rate, illustrating that the electrical resistivity exhibits a strong
relationship to DCS flow rate. The minimum value of electri- 30

cal resistivity, slightly greater than 3 Q-cm, occurs at 35 sccm
and 36 sccm DCS. As with Example 1, the films were not
intentionally doped either during or after the deposition pro-
cess. In this example, the electrical resistivity value and the
residual stress nearest to zero occurred at a DCS flow rate of 35

about 35 sccm.
While the present invention has been illustrated by the

above description of embodiments, and while the embodi-
ments have been described in some detail, it is not the intent
of the applicants to restrict or in any way limit the scope of the 40

invention to such detail. Additional advantages and modifi-
cations will readily appear to those skilled in the art, such as
the use of alternate precursors or the deposition of alternate
films. Therefore, the invention in its broader aspects is not
limited to the specific details, representative apparatus and 45

methods, and illustrative examples shown and described.
Accordingly, departures may be made from such details with-
out departing from the spirit or scope of the applicants' gen-
eral or inventive concept.

We claim:	 50

[1. A process for achieving a predetermined value in a
desired property selected from residual stress and electrical
resistivity in a product ceramic film deposited on a substrate
by low pressure chemical vapor deposition, the ceramic being
formed from a metallic element and a non-metallic element, 55

the product ceramic film being formed by
supplying a metallic element precursor to a reaction cham-

ber,
separately supplying a non-metallic element precursor dif-

ferent from the metallic element precursor to the reac- 60

tion chamber under conditions of temperature and pres-
sure such that the metallic element precursor and the
non-metallic element precursorreact to form the product
ceramic film on a substrate inside the reaction chamber,

the process comprising	 65

(a) selecting pressure or flow rate of the metallic element
precursor as the control variable,

8
(b) determining the relationship between the desired

property and the control variable when the remaining
variables in the low temperature vapor deposition pro-
cess are held at selected fixed values, and

(c)during formation of the product ceramic film, achiev-
ing the predetermined value for the desired property
by controlling the control variable while maintaining
the remaining variables at the above selected fixed
values.]

[2. A process according to claim 1 for achieving a desired
residual stress or electrical resistivity in a product silicon
carbide film deposited on a substrate by low pressure chemi-
cal vapor deposition, the product silicon carbide film being
formed by

supplying a silicon precursor to a reaction chamber,
a separately supplying a carbon precursor different from

the silicon precursor to the reaction chamber under con-
ditions of temperature and pressure such that the silicon
precursor and the carbon precursor react to form the
product silicon carbide film on a substrate inside the
reaction chamber,

the process comprising
(a) selecting pressure or flow rote of the silicon precursor

as the control variable,
(b) determining the relationship between residual stress

or electrical resistivity and the control variable when
the remaining variables in the low temperature vapor
deposition process are held at selected fixed values,
and

(c) during formation of the product silicon carbide film,
achieving the desired residual stress or electrical
resistivity by controlling the control variable while
maintaining the remaining variables at the above
selected fixed values.]

[3. The method of claim 2, wherein the silicon precursor is
selected from the group consisting of silane, halosilane, tri-
methylsilane, tetramethylsilane, dimethyldimethoxysilane,
tetramethylcyclotetrasiloxane, bis-trimethylsilylmethane,
methyltrichlorosilane, silane, tetraethylsilane, and silacy-
clobutane.]

[4. The method of claim 3, wherein the halosilane is
selected from the group consisting of dichlorosilane, trichlo-
rosilane, and tetrachlorosilane.]

[5. The method of claim 4, wherein the silicon precursor is
dichlorosilane.]

[6. The method of claim 2, wherein the flow rate of the
carbon precursor is about 180 standard cubic centimeters per
minute.]

[7. The method of claim 2, wherein supplying carbon pre-
cursor comprises supplying acetylene in hydrogen to the
reaction chamber at a flow rate of about 180 standard cubic
centimeters per minute.]

[8. The process or claim 2, wherein the product silicon
carbide film is produced to have a predetermined electrical
resistivity of about 10 Q-cm or less.]

[9. The process of claim 8, wherein the predetermined
electrical resistivity is achieved by controlling silicon precur-
sor flow rate.]

[10. The process of claim 9, wherein the silicon precursor
flow rate is set to a value between about 30 and 54 sccm to
achieve the predetermined electrical resistivity.]

[11. The process of claim 8, wherein the predetermined
electrical resistivity is achieved by controlling pressure.]

[12. The process of claim 11, wherein pressure is set to a
value between about 0.42 torr and about 5 torr to achieve the
predetermined electrical resistivity.]
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[13. The process of claim 2, wherein the product silicon
carbide film is produced to have a predetermined residual
stress between about 700 MPa to about and —100 MPa.]

[14. The process of claim 13, wherein the predetermined
residual stress is achieved by controlling pressure.]

[15. The process of claim 14, wherein the pressure in the
reaction chamber is set to a value between about 0.42 torr and
about 5 torr to achieve the predetermined residual stress.]

[16. The process of claim 15, wherein the pressure in the
reaction chamber is set to a value of about 2 torr.]

[17. The process of claim 13, wherein the predetermined
residual stress is achieved by controlling silicon precursor
flow rate.]

[18. The process of claim 17, wherein the silicon precursor
flow rate is set to a value between about 18 and 54 sccm to
achieve the predetermined residual stress.]

[19. A method of depositing a silicon carbide film on a
substrate by chemical vapor deposition, comprising

(a) placing at least one substrate in a reaction chamber;
(b) maintaining the reaction chamber at a predetermined

pressure;
(c) supplying carbon precursor to the reaction chamber at a

predetermined fixed flow rate;
(d) supplying silicon precursor to the reaction chamber at a

flow rate; and
(e) controlling the silicon precursor flow rate to control the

stress in the deposited silicon carbide film.]
20. A method for forming a silicon carbide layer on a

substrate, the method comprising:
providing a firstgas to a reaction chamber that contains the

substrate, wherein the first gas comprises silicon, and
wherein the first gas is provided at a first flow rate;

providing a second gas to the reaction chamber, wherein
the second gas comprises carbon, and wherein the sec-
ond gas is provided at a second flow rate;

selecting a control variable as one ofthefirstflow rate and
a pressure in the reaction chamber;

forming the silicon carbide layer on the substrate; and
controlling the control variable to control at least two

properties of the silicon carbide layer, wherein the con-
trol variable is controlled based on an established rela-
tionship between the control variable and each of the
two properties;

wherein one controlled property is electrical resistivity and
one controlled property is one of residual stress and
residual stress gradient.

21. The method of claim 20 wherein the silicon carbide
layer is formed by a low-pressure chemical vapor deposition.

10
22. The method ofclaim 20 further comprising determining

the established relationship between the control variable and
each of the two properties by characterizing each of the two
properties for a silicon carbide test layer grown in the reac-

5 tion chamber at each of a plurality of deposition conditions,
and wherein each of the plurality of deposition conditions
includes a diferent value for the selected control variable.

23. The method of claim 20 wherein residual stress is
selected as one of the two properties, and wherein the control

10 variable is controlled such that the silicon carbide layer is
characterized by residual stress that is within the range of
approximately —100 MPa to approximately +100 MPa.

24. The method of claim 20 wherein the control variable is
controlled such that the silicon carbide layer is characterized

15 by electrical resistivity that is less than approximately 10
Q -cm.

25. The method of claim 20 wherein the control variable is
selected as the pressure.

26. The method of claim 20 wherein the control variable is
20 selected as the first flow rate.

27. The method of claim 20, further comprising selecting
the first gas from the group consisting of silane, dichlhorosi-
lane, trichlorosilane, tetrachlorosilane, halosilane, trimeth-
ylsilane, tetramethylsilane, dimethyldimethoxysilane, tet-

25 ramethylcyclotetrasiloxane, bis-trimethylsilylmethane,
methyltrichlorosilane, silane, tetraethylsilane, and silacy-
clobutane.

28. The method of claim 20, further comprising selecting
the first gas as dichlorosilane and the second gas as acety-

30 lene.
29. The method of claim 20 wherein the two properties are

selected as residual stress and electrical resistivity.
30. The method of claim 29 wherein the control variable is

controlled such that the silicon carbide layer is characterized
35 by (1) residual stress that is within the range of approximately

—IOOMPa to approximately 100 MPa and (2) electrical resis-
tivity that is less than approximately 10 Q -cm.

31. The method of claim 20 wherein the two properties are
selected as electrical resistivity and residual stress gradient.

40 32. The method of claim 31 wherein the silicon carbide
layer is formed while controlling the control variable to fur-
ther control the residual stress of the silicon carbide layer.

33. The method of claim 32 wherein the control variable is
controlled such that the silicon carbide layer is characterized

45 by(]) residual stress that is within the range of approximately
—IOOMPa to approximately IOOMPa and (2) electrical resis-
tivity that is less than approximately 10 Q -cm.
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